Home Contact Sitemap 中文 PMO
Location: Home > Research > Research Progress

Hubble and Spitzer Space Telescope Observations of the Debris Disk around the Nearby K Dwarf HD 92945

  We present the first resolved images of the debris disk around the nearby K dwarf HD 92945. Our F606W (V) and F814W (I) HST/ACS coronagraphic images reveal an inclined, axisymmetric disk consisting of an inner ring 2".0-3".0 (43-65 AU) from the star and an extended outer disk whose surface brightness declines slowly with increasing radius 3".0-5".1 (65-110 AU) from the star. A precipitous drop in the surface brightness beyond 110 AU suggests that the outer disk is truncated at that distance. The radial surface-density profile is peaked at both the inner ring and the outer edge of the disk. The dust in the outer disk scatters neutrally but isotropically, and it has a low V-band albedo of 0.1. We also present new Spitzer MIPS photometry and IRS spectra of HD 92945. These data reveal no infrared excess from the disk shortward of 30 micron and constrain the width of the 70 micron source to < 180 AU. Assuming the dust comprises compact grains of astronomical silicate with a surface-density profile described by our scattered-light model of the disk, we successfully model the 24-350 micron emission with a minimum grain size of a_min = 4.5 micron and a size distribution proportional to a^-3.7 throughout the disk, but with a maximum grain size of 900 micron in the inner ring and 50 micron in the outer disk. Our observations indicate a total dust mass of ~0.001 M_earth. However, they provide contradictory evidence of the dust's physical characteristics: its neutral V-I color and lack of 24 micron emission imply grains larger than a few microns, but its isotropic scattering and low albedo suggest a large population of submicron-sized grains. The dynamical causes of the disk's morphology are unclear, but recent models of dust creation and transport in the presence of migrating planets indicate an advanced state of planet formation around HD 92945.
 
Printer Text Size: A A A
Research Divisions
Research Progress
Supporting System
Achievements
Research Programs

Copyright ? 2009 Qinghai Station of PMO & , Chinese Academy of Sciences.
26 Box Branch Post Office People Road, Delingha, Qinghai, China. Tel:86 977 822 1935 FAX:86 977 822 4970 Code:817000